DruckversionE-Mail senden

Bindungsenergie

Die erforderliche Energie, um aneinander gebundene Teilchen (unendlich weit) zu trennen. Im Falle eines Atomkernes sind diese Teilchen Protonen und Neutronen, die infolge der Kernbindungsenergie zusammengehalten werden. Neutronen- und Protonenbindungsenergien sind die Energien, die erforderlich sind, um ein Neutron bzw. ein Proton aus einem Kern zu entfernen. Elektronenbindungsenergie ist die Energie, die benötigt wird, um ein Elektron vollständig aus einem Atom oder einem Molekül zu entfernen. Die Bindungsenergie der Nukleonen in einem Atomkern beträgt für die meisten Atomkerne rund 8 MeV je Nukleon. Bei den schwersten Atomkernen, wie z. B. Uran, ist die Bindungsenergie je Nukleon deutlich kleiner als bei Atomkernen mit mittleren Massenzahlen. Bei der Spaltung eines Uranatomkerns in zwei Atomkerne mit mittlerer Massenzahl wird daher die Bindungsenergie insgesamt größer, was zur Folge hat, dass Energie nach außen abgegeben wird (Kernspaltung). Bei den leichten Atomkernen ist die Bindungsenergie der Atomkerne der Wasserstoffisotope Deuterium und Tritium deutlich geringer als die des Heliumkerns He-4. Die Verschmelzung von Deuterium und Tritium zu Helium ist daher ebenfalls mit einer Energiefreisetzung verbunden (Fusion).

Bild: Abhängigkeit der Kernbindungsenergie pro Nukleon von der Massenzahl
Abhängigkeit der Kernbindungsenergie pro Nukleon von der Massenzahl